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Spinodal decomposition, power laws, and wetting at a triple point
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We study numerically the dynamics of phase separation in ternary mixtures at a triple point. For the full
range of compositions and for different interaction parameters, the long time growth is in accord with a
universal law. The early time behavior is governed by the structure of the spinodal region, including the
possibility of a two step separation and decomposition originating at a surface and propagating into the bulk.
The appearance of the domains is governed by the wetting properties of the mixture and the growth of a
wetting layer follows again the universal law; a result that we can interpret with a simple phenomenological
model.

DOI: 10.1103/PhysRevE.67.011508 PACS nunier64.75+g, 68.35.Fx

[. INTRODUCTION followed by triple points at lower temperatures where liquid-
liquid-vapor coexistence occurs. Then a droplet of unmixed
Interesting and new phenomena appear when three phasgkéguid in contact with its vapor may be quenched into the
coexist. The phenomenological pioneering work of Widomthree-phase region. In some cases phase separation shows up
[1] and Cahn[2] uncovered the now well known wetting first at the surface and propagates into the droplet at the same
transitions[3]. When the system is in the partial wetting time that fingers of the vapor penetrate into the drofiléf.
regime three interfaces form and meet, forming definite di- In this work, we explore the behavior of the spinodal
hedral angles, at a line with an excess free-energy, or linfecomposition into a three-phase region when the three
tension[4]. The most significant effort to obtain a statistical- Phases are represented by two order parameters and contrast
mechanical description of the wetting transition and of thethis behavior with the case when the three phases are repre-
line tension has been the study of model systems with ong€nted by a one-order parameter system in the presence of a
bulk order parameter in contact with an inert phase, whicivall. The model that we use presents a very rich behavior of
exerts an attraction to one of the phases and may be lorifase separation, including three-phase separation with vari-
ranged in character. Also the growth of the wetting layer withous wetting properties. The global thermodynamic behavior
time has been studigé,6] when the system, with one order of model mixture that we use is well known and, in Sec. I,
parameter is quenched into the spinoda] region of a twoWe€ compose a brief reminder of its properties inClUding the
phase system in presence of a wall. wetting behavior into the three-phase region. In Sec. Ill we
Spinoda' decomposition occurs When a mixture ispresent our results. In particular we find that the early time
quenched from the the one-phase region into the immiscibilbehavior may be in two steps. In the first step two fluids form
ity gap, and the unstable homogeneous state decays via waVéth droplets, or labyrinthine structures depending on con-
fluctuations that are amplified. In one component systemssentration. At a later stage the droplets or one region in the
the dynamics of the subsequent nucleation and growth dpicontinuous regions decomposes into two phases. We show
domains follows a scaling behavior where the domain patihat this behavior is related to the properties of the spinodal
terns, at later times, look statistically similar to those at earfégion. At late times the growth is such that universal
lier times [7,8]. In off-critical quenches of a binary fluid, Lifshitz-Sylozov law is always obeyed, even in the case
droplets of the minority phase are formed in a sea of thevhere a two-phase planar interface is quenched into the
majority phase. When this system is in the presence of a wathree-phase region forming a wetting layer, a result that we
that preferentially attracts the minority phase, a wetting layefan interpret theoretically. In Sec. IV we summarize our re-
is rapidly formed creating a depletion zone near the surfacgults.
where droplets are abs€fE]. Further growth of the wetting
layer is by diffusion through this depletion zone and the Il. THE MODEL
growth rate of the wetting layer, at early times, depends on .
the range of the surface potential and in the case where suy: To model the mixture we use the Furman Dattagupta and

face potential is short-ranged early time behavior is logarith- r:fﬂths three COTQOQSNI mt?]dé]LZ], exéende(;j tot mclude_
mic with a cross over to the universal Lifshitz-Sylozov law inhomogeneous statg$3]. In the squared gradient approxi-

[9], where there is a single length characterizing the domaiﬁnat'on’ appropriate to short-ranged interactions, the grand

pattern[10]. Near a symmetric compositidé] wetting ef- potential density is,
fects are strongly delocalized by hydrodynamic effects

. . ; . ) o=KT[ulnu+v Inv+wInw]+avw+bwu+cuv
unique to bicontinuous phase separation and, more interest-

ingly, the phenomenon of retarded wetting-induced second- 1
ary phase separation is observed. +5(aVe- Vw+bVw-Vu+cVu-Vo)—uyu
In compressible binary fluids, the phase behavior is more
complex and some mixtures show liquid-vapor equilibrium — Lyl — Uy W, (2)
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where (@,v,w) are the concentrations of components (@)
(UVW), (my, My mw) the chemical potentials for the mix- j Y j i T
ture with interaction parameters,p,c). We will consider 0.145} ¢

only the casea=b with the usual normalization condition
at+b+c=1, that sets the temperature scale, in what is
called the symmetric part of thprincipal energy triangle 0.135f
(a>0, b>0, and 0.5>c>0). We also assume that the mix-
ture is incompressible so thattv+w=21. The mixture is
then characterized only by the temperatliy¢éhe parameter K2 o.25}

0.14F

0.13p

and the concentrationsandv of the mixed fluid before the o12b
qguench.

The diffusive evolution of such nonequilibrium system %!}
can be described by the Cahn Hilliard mod&] with two onf

independent and conserved order parametgist) and

v(r,t). The equations of evolution are of the form o105

01 .
0 3 . X X . 1
au(r,t)  6Q[u,v] 1-w
gt osu(r,t)’
2
du(r,t) _ 8Q[u,v] 0.1451
ot ov(r,t) 014l T W
Here Qu,v]=fw[u,v,(1—u—v)]dr is the grand po- 0.135}
tential and we have absorbed the two, equal, transport coef- .| T,
ficients into the time scale. We have not considered thermal T Puy
noise since it has been shown to be irrelevant by renormal-iz 0125 /'\U' Py
ization group technique]. o2t P
The structure of the uniform equilibrium phase diagram of W T l P
the model differs for different values of the interaction pa- "5 v
rameterc. In the region of the principal triangle, studied 0.1}
here, there are 3 sections all of them with triple points with 0105
phasesP, Py, and Py, (rich in componentsJ, V, W) in )
coexistence. This regions are characterized by the way the 015 02 od o8 o8 3

triple points end as the temperature is raised.d<06.29, in | 1-w
region |, a line of triple points ends in a two phas®,(,Py)
critical point in equilibrium with the third phaseP(,) at a

temperaturerl;, leaving two pairs of phases in coexistence 047

(Pw,Py_v) (Py_vy is a liquid poor in theW component

with U and V unmixed, and Py ,Py). Coexistence of e l
(Py,Py) with low concentrations of/ ends at a line of 015

critical pointsT.(w). The (Pw,Py_v) equilibrium at high
concentrations ofV ends at an ordinary critical poifit, [see
Fig. 1(@]. In this mixtures the three phases beldpare in a 0.14r
partial wetting regime withyyw= yvw< yuv, Whereyg is x
the surface tension of th&l —W interface. In the second 0131
region Il, the so calledhield region(0.29<¢<0.346) there
is equilibrium of four phases at one temperatlize three of 0.12p
them end at a tricritical point; which continues with a line
of critical pointsT.(w) and two at an ordinary critical point 0.1
T. [see Fig. 1b)]. For the region Il (0.346.¢c<0.71) the

model mixture presents also lines of triple points endingina 0.1
tricritical point, followed by T.(W). In regions Il and I,

and at low temperatures, each of the three phases bEJlow
partially wets the interfaces between the other two and have

a wetting transition af,, where yuw+ yvw= yuv [14], Ty _ FIG. 1. Phase diagr_ams for the three component mixture for
decreases asincreases and in the special case0.5, Py dlffere.nt.valu.es of the. |nteragt|on parametr The temperature
wets the interface betwed®, andPy, at all temperatures. In  SCal€ is in units of the interaction paramedera+b-+c.

Fig. 2 we show a plot of the spreading coeffici&it v\,

0
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FIG. 2. Spreading coefficieffin arbitrary unit$ at constant tem-
perature as a function of the interaction parameter

—(wwtYuw) @s a function of the interaction parameteat
constant temperature below the four-phase equilibrium tem-
peratureT,. In the early stages of the evolution, in this mean
field theory, the structure of the spinodals becomes relevant.
For small fluctuations of the formu= duge™ “'*'k'" from a
uniform state with concentrationsu,1—u—v) and for
small wave vectok Egs.(2) become

0 8Ug=K?(w,,0Ug+ wy, Svy),

)

08V o=K?(wy, SUg+ w,,8v,),

wherew; ; is the stability matrix of the model, then when the
eigenvalues of the stability matrix become negative for a
value ofu andv the state is unstable to fluctuations of long
wavelength. In Fig. 3 we show the structure of the spinodals
at low temperatures. Along the line=v, the eigenvectors of
the stability matrix are symmetric of the fordug= 6vy and
antisymmetric withdug= — dv,. In regions | and Il of the
symmetric part of the energy triangle the spinodals have a
complex structure that divide the area of the concentration
triangle into 5 regions. Three of these regions, near the ver-
tices of the composition triangle, have positive eigenvalues
and represent stable or metastable uniform states. The inter-
esting central region has two negative eigenvalues for sys-
tems withc<<0.29, but for 0.29¢c<0.346 the two negative
eigenvalues at low temperature become positive at some
temperature below,, the fifth region is unstable with re-
spect to one of the two eigenvectors. In the symmetric part of
the composition triangle, the eigenvalue of the symmetric
eigenvector is negative for low valugsbut for large values u v
of w the antisymmetric eigenvector is the unstable one.

This model may also be applied to a binary alloy with
vacancies where the phaBg, represents the vapor phase in
this context similar models have been investigated before, FIG. 3. Regions of stability and spinodal lines for mixtures with
for low concentration of vacancies aweF 2/3, to study the different values ofc and kT=0.08. In (8) ¢c=0.285, in(b) c
growth law of domains when vacancies are pre$tht-18. =1/3, and in(c) c=0.5.

011508-3



C. VAREA PHYSICAL REVIEW E 67, 011508 (2003

),

FIG. 4. Pictures obtained from
simulation of the model for sys-
tem S1, with a time stepAt
=0.0125. In (a) the concentra-
tions of the uniform initial state
are up=v,=0.14 and the time is
t=130. In (b) the time ist=6.7
and global concentrations of the
species araly=v,=0.25. In(c)
and (d) two different contrasts of
the case wherea=5.71 andug
=v,=0.37. In(c) shades of gray
represent concentrations of—v
and in (d) concentrations ofw.
The time scale is arbitrary and
the numbers are proportional to
the number of iterationsN (t
=KTAtN).

Ill. RESULTS

A. Quenches from a uniform initial state 25

The Cahn-Hilliard equations are solved by the simple Eu-
ler method with periodic boundary conditions in two dimen- i
sions on a 108100 lattice. The initial state is a uniform
mixture of the three components with a random noise of
small amplitude over the whole system to initiate the phase
separation. As examples we show results for two systems@
SystemS1 is a mixture withc=0.285 close to the shield = }
region in regionl at a temperaturkT=0.08, the concentra-
tions of the equilibrium states at the triple point aR,
[0.9524,0.0124,0.0352 P,[0.0124,0.9524,0.0332 and
Pw[0.0123,0.0123,0.9794he temperature for the end of the
triple line is atkT=0.12. For this systentsee Fig. 2 the 0
three phases are in the partial wetting regime. SyS2ris a
mixture withc=0.50 at a temperatuteT=0.08 the concen-

L.5p

0.5

trations of the equilibrium states at the triple point &g, 0 1 2 3 4 5 6 7 8 9
[0.9539,0.0028,0.0433 P,[0.0028,0.9539,0.0433 and In(501)
Pw[0.0845,0.0845,0.8310he temperature of the tricritical

point is atkT;=0.15 and phas®,y wets the interface be- FIG. 5. In-In plot of the time evolution of the first zero of the
tween the other two phases. correlation function for the system shown in Figéo)and 4c), the

Figure 4 shows typical pictures for systes for differ- dotted lines are the best fits wilk= Ry+ AtY3. Ris in units of the
ent concentrations, here we use shades of gray to represdaitice constant antas in Fig. 4.
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FIG. 6. Pictures obtained from
simulation of the model for sys-
tem S1, with a time stepAt
=0.0125. In (a) the concentra-
tions of the uniform initial state
are up=v,=0.14 and the time is
t=130. In (b) the time ist=6.7
and global concentrations of the
species araly=v,=0.25. In(c)
and (d) two different contrasts of
the case where=5.71 andu
=v,=0.37. In(c) shades of gray
represent concentrations of—uv
and in(d) concentrations ofv.

the concentration ofi—v. Figure 4a) is the picture that
results from the evolution of a uniform state with concentra-
tions u=v=0.15 at a time corresponding to 80000 itera-
tions. We were forced to use a small time step Aof 3sh
=0.006 due to numerical instabilities brought about by the
logarithmic terms in the kinetic equations. In this region of
concentration, linear analysis shows the growth of fluctua- 3}
tions with Su= dv and small droplets of an unmixed fluid of

the minority components forms in a sea of the majority
phase. When the concentration amplitude of the droplets 25
reaches the central spinodal region in Figa)3vhere fluc- | ——RR AP
tuations withéu= — év become unstable the droplets start to |
decompose, as a result the two minority phaBgsand Py,
condense into droplets that often are attached to each othe
forming a definite set of contact angles. The interfaces be- | , . . . , . . . .
tween the two droplets are straight because there is no pres 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
sure difference across that interface. We have measured the 50t

growth exponent for these droplets directly by measuring the

area that each phase occupies and the number of droplets of

each phase, the average radriper droplet for long times FIG. 7. Plot of the time evolution of the first zero of the corre-
satisfies a growth law of the form(t)ot* with x=1/3 i.e., lation function for the system shown in Figl§. The dashed line is
of the Lifshitz-Slyozov form[9]. For an initial state with the best fit withR=R,+At"3. Units as in Fig. 4.
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concentrationsu=v=0.275 deep into the spinodal region componentv, the Lifshitz-Slyozov regime is attained at late
but with still only one of the eigenvectors of the stability times and the analysis of the exponents is problenjat¢
matrix unstable, the concentrations ofand v are large At higher concentrations af andv for an initial concentra-
enough to form a labyrinthine structure where one of thetion u=v=0.375 droplets ofP,, are formed in a complex
phases is a mixture of theandv components, and the other matrix of domains of phaseB, and P, [see Fig. &)].
is rich in componentV. Again when the concentration am- These start forming in the boundaries of the droplet® gf
plitudes reach the central spinodal region in Figa)3he  very much in the same way as Plapp and Gouyet describe
stripes start to decompose into droplets. In Fig) &ve show [11]. The Lifshitz-Slyozov growth law, at late times, of the
the appearance of the domains after 80 000 iterations. Hemroplets ofPy, is also applicable in this region of concentra-
instead of growth of interconnected domains of two phasesions.
as in a two component mixture, we have the curious growth For systemS2 linear analysis shows only one unstable
of strings of droplets with alternating, and P, domains eigenvalue of the instability matrix witldu=— sv for all
that percolate the lattice in a sea of the majofy, phase. symmetric concentrations in the initial state. Figure 6 shows
Here one of the contact angles is7 since yyw=7yyw the typical appearance for the growing domains for system
>yyy. Itis easy to understand why the droplets alternate; aB2. In Fig. 6a) the concentration of the initial uniform phase
earlier times the system decomposes into a bicontinuouis u=v = 0.2 here well separated droplets of the two uniform
structure with regions rich iW and poor inW, as if it had  minority phases are formed. Again the growth law for the
only one order parametgsee Fig. 4b)], when the value ofv ~ average radius of this droplets is consistent with the expo-
poor in W reaches the central spinodal region, the regionsentx=1/3 for late times. In Fig. @®) we show the result of
poor in componentV start to decompose into droplets of the cooling down the system with an initial concentratios v
Py and Py, in addition there is a gain in free-energy creat- =0.25. Here instead of strings of alternatify, and P,
ing interfaces with low surface tension. In this interestingdroplets, the interfaces betweBg andP,, are wetted by the
case we analyzed the size of these structures by calculatir®,, phase, and the two kinds of domains become decoupled.
the first zero of the angle averaged pair correlation functionn Fig. 7 we show the behavior of the radius of the domains
gii(r,t) fori=u andi=v [19]. This lengthR;(t) was then as a function ot'® as measured by the average of the first
averaged over 10 different random initial conditions and avzero of the pair correlation function. Again the value Rf
eraged over the index The growth is shown in Fig. 5 in a there, is the average over 4 runs, for the radii of Bheand
In(R)—In(t) plot. There, one can clearly observe the two re-P,, droplets and for 250 000 iterations. As seen there, the fit
gimes, formation of a labyrinthine structure followed by the to the behavior predicted by Huse is excellent. In Figs) 6
formation of droplets. At the transition region the size of theand Gd) the appearance of the domains when the initial con-
structures decreases because the droplets formed on tbentration isu=v =0.375 is shown. In the early stages the
stripes are smaller than the stripes themselses Fig. 4c)].  kinetics is peculiar in the sense that the minofigcording
When performing the same analysis to the growth shown ino the phase rulephasesP, and P, are formed with con-
Fig. 4@ we also find this two stages of growth except that,siderably higher concentrations ofandv than in the three
in this case, the decrease R{(t) upon reaching the cental phases in equilibrium. Compone¥ spreads along the in-
spinodal is smaller. terface betwee®, andP,, and starts to grow forming pock-
The two fits in Fig. 5 are in accord with Huse’s theory ets of P, in regions where four domains of the minority
[20] that assumes that at these high concentrations the rate phases medtee Fig. 6d)]. In this configuration we used the
average domain size may be written as first moment of the structure fact&,,(k,t), averaged over
angles, to measure the typical size of the domains; this is
again consistent with the Lifshitz-Slyozov law. Of course
this implies that the wetting film that surrounds domains of
Py andPy, is growing at the same rate as the whole structure
[5] for long times.
the first term coming from diffusion between domains trough
the bulk and the second along the interface between do-
mains. Interestingly, in this case, the same type of contribu-
tion could equally be interpreted as coming from the excess
free-energy per unit lengtk of the line tensionghere point To study the above mentioned behavior of the wetting
tensiong that are formed in this configuration witRg layer we quenched the system from a double poink®t
=\/y. Itis easy to show that for larg® the solution of this =0.164 tokT=0.13 withc=0.45[see broken arrow in Fig.
equation is of the forrTR=R0+At1’3, with 2Ry=R;. In 1(c)]. The initial state has a planar interface between the
Fig. 4(b) one can see that the growth is mainly due to coaphasesP, and P,,. After the quench, these phases become
lescence of droplets of one phase that are closer to dropletsstable and the minority phases start to nucleate so that
of the same phase than when these droplets are placed dibplets of Py, nucleate in phas®, and domains ofP
random. We observe that the coalescence occurs when twaicleate in phase,,. The other minority phase,, wets all
droplets surround the droplets of the other phase. It is interthe interfaces formed. As seen in FigaBa wetting layer, of
esting to notice that as in Monte Carlo simulations carriecthicknessd(t), and a depletion zone, of thicknegxt),
out using Kawasaki dynamics and for low concentrations ofgrows at both sides of the planar interface. In accord with

1 R,

dR
da RTR

B. Quenches from multiple phase equilibrium into multiple
phase equilibrium.
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FIG. 9. Concentration profila(r) =v(r) for two-phase equilib-
rium with c=0.285 andkT=0.13. The dotted lines show the two

eigenvalues of the stability matrix for those valuesucdlong the
profile.

most negative eigenvalues lie along the interface, the system

FIG. 8. Two different contrasts of the picture obtained from that now consists of the interface between two unstable
simulation of the model a system with=0.45, at timet=3000 phases, starts to decompose along the interfaee Fig.
with a time stepAt=0.125. The initial state consists of a planar 10(a)] [11]. At later times droplets OPW are formed in a
interface between phasé, and Py at a temperatur&T=0.154  complex matrix of theP, and P, phases at one side of the
that_ls quenched to the t_emp_erattké=0.13 that is above the original interface and pairs of droplets of tig, and Py
wetting temperature for this mixture. phases form inside the other side of the original interface
[see Fig. 1(b)]. Contrary to what Plapp and Gouyet find the
interface remains flat because in this case the dihedral angle
'between the three phases +ism when Py, is the middle
phase.

Finally we have cooled a system in a three-phase state,
Pu_v, Py, andPy, where one of the phases wets the other
(5) two into a different three-phase sta®g,, Py, andPy, in
the partially wetting regime. Far=1/3, with an initial tem-
perature ok T=0.122 above the four-pase equilibrium tem-
jperature, and +w=0.76 the original concentration profile
Is shown in Fig. 8), upon cooling tokT=0.08 the most

Puri and Bindef5], since the diffusion from the boundary of
the droplets to the wetting boundary is through the depletio
zone, the current of componet at z=—-d/2 and atz
=d/2 is

J,=*

Dduy’

phases at either side of the interfaag; is the concentration ) ,
of componentU or V in the P,, phase. Since the global unstable phasB, _y so that alternating stripes &, andP,,

concentrations of the three components, in the wetting an@'® formed inside this phase. Meanwhile droplet® gfgrow
depletion layers is conserved, we hade=2D(uy+uy mt_o_the originalPy, phase .w.h|le droplet.s d?y grow into the
—2Ug)/(Ug— Uyy). Hereuy andu, are the concentrations of original P, phase. The original planar interfaces betw®gn

U in the P, phase and in the initial state, respectively. From® Pv and Py_y, has now undulations where there is a
this we obtain profusion of droplets with three equal dihedral angles in this

completely symmetric mixturéFig. 11).

2y(Ug— Uy)
2= - W 6)
D“uw(uy+uy—2uo) IV. CONCLUSIONS
giving way again to the universal lal(t) = d(t) ot for all In conclusion it has been demonstrated numerically that in
times. a three component mixture, for a quench deep into the triple

On the other side of the energy triangle for 0.285, we  point, all length scales grow with time &t)=R,+ At® at
cooled down a different kind of double point into the three-late times. The early time behavior is affected by the struc-
phase region, from a temperatureTo£0.13 toT=0.08. In  ture of the spinodals where we found that, in some cases,
Fig. 9 we show the values af=v along the profile, there, labyrinthine decomposition with some valuesAandR, is
we also show the eigenvalues of the uniform stability matrixfollowed by decomposition into droplets with some other
had a uniform state acquired those valuesuofSince the values ofA andR,.
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(2)

200

I8

FIG. 11. (a) initial profile at a triple point withkT=0.122 and
c=1/3 where the phase,, wets the interface between tig, and
Py, phases. In(b) we show the evolution of the system after a
quench akT=0.08 and 80,000 iterations.

so that the interface does not remain flat, we were able to
track down this behavior to the spinodal properties that mix-
tures with 0<c<<0.346 have. In the second case two sym-
metric phases become unstable when the system is cooled
into the three-phase region. The interface remains flat when
cooled into the three-phase region and we obtain two differ-
ent behaviors. When below the wetting temperature, droplets
FIG. 10. Evolution of the concentration profile shown in Fig. 9 of the third-phaséP,y, form into the two bulk phases, in the
when the system is quenched to a temperakiie 0.08. In(a) the ~ second caséabove the wetting transitiondroplets of Pyy
early time growth initiated at the surface and(b) the later stages never form. The growth of the wetting layer at the surface
of the growth. follows the universal growth law at all times even for this

S ) model with only short-ranged potentials in contrast with the
In these symmetric mixtures one can quench the interfaCgagyts of Puri and Binder for wetting at a solid wall. These

between two phases in equilibrium at high temperature intqegyts are likely to encourage new experiments on the spin-

the three phase region. In Fig. 1 we show two kinds ofgqa| decomposition in ternary fluids, solids, and polymer so-
guenches; one in which the quench is from a double poinftions.

Pw in equilibrium with P, _y, where the concentrations of

both phases have the propertty-v, and one in which the ACKNOWLEDGMENT
two phases in equilibrium arB and P,,. The first corre-
sponds to the case discussed by Gouyet and Plagpvhere | acknowledge support from the CONACyT through

the decomposition of one of the phases starts at the surfacgrant No. 27643-E.
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